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The paper presents a proposal of using an experimental phenomenological approach and
energy based method to the modelling of mechanical properties of nonlinear elastic mate-
rials using examples of two selected polymers. On the basis of an experimental stress-strain
relation, together with transversal deformation measurement and the geometrical interpre-
tation of the deformation process, analytical forms of the strain energy density function
and a pure volumetric part of the strain energy density function have been introduced. The
volumetric part of energy has been used in the description of the material damage process
interpreted as the appearance of the first plastic deformations, which is the original part of
the work and continuous investigations carried out by Wegner and Kurpisz. All theoretical
investigations have been illustrated using examples of PVC and PA-6.
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1. Introduction

Plastic materials are very widely used in the engineering practice due to some important con-
struction properties like small weight, workability, and quite good mechanical properties. Modern
complex mechanisms and structures as well as mechatronics devices are in the majority made of
modern materials such as polymers. It is necessary and inevitable to do research on mechanical
properties of polymers and to model plastic and other material behavior under diverse loads.

However, there exist a lot of physical models of plastic materials like (Necas and Hlavácek,
1981; Obst et al., 2015; Valavala, 2008; Ward and Sweeny, 2013). The identification of the reasons
of material damage is generally very difficult. The tools or parts made of such materials are very
often under influence of external forces, which generate complex stress states. The influence of
dynamic loading compression at room temperature, when considering “Young’s modulus, energy
dissipation of plastic materials”, was discussed in (Nakai and Yokoyama, 2008) for ABS, PA-6,
PA-66, PC and in (Nakai and Yokoyama, 2015) relating to ABS, HDPE, PC, POM, PP and
PVC. A variety of factors (Cowie and Arrighi, 1995) which should be taken into consideration,
render the strain energy based mathematical modelling as one of the most important tools in
the description of materials behaviour. Many researchers use the strain energy based methods
all the time (Li, 2001; Wegner and Kurpisz, 2013; Wegner and Obst, 2007) but generally in the
case of metals (Necas and Hlavácek, 1981; Wegner and Obst, 2007), metal foams (Wegner and
Kurpisz, 2013), concrete (Li and Ren, 2009), and also materials brittle as rocks (Hamiel et al.,
2011). However, some also apply it in the modelling of plastic incompressible materials such as
rubber (Sang et al., 2014).

It is very important to consider the possibility of taking an energetic approach when model-
ling materials in a nonlinear relation between stress and strain in the range of elastic deforma-
tions. This type of problems was investigated by Agostiniani and DeSimone (2012), based on
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the Ogden conception energy model which was used in the modelling of the nonlinear hyper-
-elastic material like rubber. However, this type of approach can be useful for other materials,
for example, polymers and biological tissues.

The main aim of the current paper is the proposal of energy based and phenomenological
approaches taking into consideration the description of selected mechanical experimental charac-
teristics of two selected types of popular polymers: PVC and PA6, widely used in the engineering
practice. Based on the stress-strain relation in a one-axial tension test with the unloading process
and the relation between transversal and longitudinal deformations, the strain energy density
function and its elastic part has been introduced. To ascertain the strain energy density func-
tion in a three-axial stress state, a geometrical interpretation of the deformation state has been
used. The extraction of the purely volumetric part of strain energy was made on the basis of
hydrostatic pressure interpretation, which is an original part of the paper.

For clarity, the work is divided into two parts. The first one focuses on the description of
experimental results and the second one introduces basic analytical relations of the strain energy
based polymer material model. All investigations are illustrated by simple examples.

2. Messauring methods and experimental results

The choice of experimental methods is strictly connected with the information which is possible
to gain during basic strength tensile tests. In the aspects of mathematical model construction,
the following issues are very important:

• determination of the stress strain relation both in the case of monotonic loading as in the
case of unloading process,

• determination of the transversal-longitudinal deformation relation.

All experiments were conducted by making use of ZWICK Z100 strength tensile testing ma-
chine (monotonic loading) and hydraulic vibrator MTS (cyclic loading process). In all cases,
elongation of the specimen was measured by an extensometr. The real loading velocities we-
re applied as 37mm/min (0.0137 s−1) and 38mm/min (0.0141 s−1), respectively, for PVC and
PA6. Such velocity of deformation does not follow the change of microstructure of investigated
polymers. During the experimental tests, the polymer bar specimens were used as shown in
Fig. 1. Transversal deformations were measured by the use of a high-resolution camera. During

Fig. 1. Polymer specimen dimensions and the applied method of deformation measurement
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tension tests on the specimen surface, special reference marks were signified. On the basis of the
measured longitudinal and transverse deformation, variable Poisson’s ratio was estimated.
The basic experimental relations for the investigated polymers PVC and PA6 are presented

below (Fig. 2).

Fig. 2. Stress-strain relations in a monotonic one-axial tension process for polymers (a) PVC and
(b) PA6

The shapes of the above experimental characteristics allow one to conclude that the discussed
plastic materials are nonlinear elastic, and for small deformations, the nominal and real stress
are approximately the same. In all cases, the upper yield limit of plastic flow does not exist.
Above, the experimental plots can be approximated by the use of the odd functions, respec-

tively, for PVC and PA6

σ(εl) =

{

3.06 · 103εl − 5.82 · 10
9ε5
l

for εl ¬ 0.018

1.45 · 103εl − 4.73 · 10
5ε3
l

for εl ¬ 0.032
(2.1)

The changeable longitudinal deformation coefficient (tangential Young’s modulus) for PVC
and PA-6, can be written respectively as

E(εl) =
dσ

dεl
=

{

3.06 · 103 − 29.1 · 109ε4
l

1.45 · 103 − 14.9 · 105ε2
l

(2.2)

Because relations (2.2) are true only in the case of elastic deformations, the next step was
to experimentally determine the range of elastic deformations.
Because the elastic deformations occur when the residual deformations, after the unloading

process, equal zero (in practice does not exceed 0.002), it is necessary to realize this process for
discussed materials. The experiment was made by the use of a hydraulic pulse generator MTS.
Each of two investigated specimens were applied to a single loading and unloading process, where
the current values of stress and deformations were measured in real time. A few initiation levels
were applied to PVC and PA6 levels for the unloading: 0.04, 0.035, 0.03, 0.025, 0.02, 0.015 and
0.01 (Fig. 3). In order to find the elastic deformation range, we needed to choose the loading
process where the residual deformations did not exceed zero.
It was assumed that the deformation was included in the elastic range if its residual value did

not exceed 0.002, therefore, the initial deformation (at the beginning of the unloading process)
did not exceed the level P4 (ε < 0.02) for PVC and P3 (ε < 0.015) for PA6.
The experimental plots of the relation between transversal εd and longitudinal εl deforma-

tions are given below (Fig. 4).
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Fig. 3. The stress-strain relations in the one-axial tension process with cyclic unloading for (a) PVC
and (b) PA6

Fig. 4. Transversal deformations coefficients (blue points) and the approximations (red lines) for
(a) PVC and (b) PA6

The approximations of the experimental results can be expressed as

εd(εl) = −5.1ε
2
l − 0.116εl v(εl) = −

dεd

dεl
= 10.2εl + 0.116 (2.3)

for PVC, and

εd(εl) = −0.49εl v(εl) = −
dεd

dεl
= 0.49 (2.4)

for PA6.

3. Strain energy based description of polymers – experimental results

As mechanical properties of the material are independent of the sample geometry, it is very
important to use this type of characteristic which has no relation to geometry. Such type of
measure, especially in one-axial tension tests, is density of deformation work, interpreted as the
work of external loads under an elementary volume of a piece of the material.
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Basing on the experimental stress-strain relation, we can write (W (ε) in MJ/m3)

W (ε) =
1

V0

∆L
∫

0

F (l) dl =

∆L
∫

0

F (l)

A0
d
( l

L0

)

=

ε
∫

0

σ(ε) dε (3.1)

where: L0 – initial length of the specimen, A0 – initial cross-section of the specimen, V0 – initial
volume of the specimen.

For each unload initiation level, the elastic part of energy was calculated. It was assumed
that the value of energy was calculated as the area under the unloading curve. Hence, the pattern
was used

W e(εl) =

εl
∫

0

σu(ε) dε (3.2)

where: W e(εl) [MJ/m
3] is the whole elastic part of energy for unloading level l, σu(ε) [MPa] –

stress strain relation during unloading, εl [mm/mm] – level of the unloading process initiation.

The plots of elastic parts of the strain energy density functions for the discussed polymers
are illustrated in Fig. 5.

Fig. 5. Plots of elastic parts of strain energy for polymers (a) PVC and (b) PA6

4. Geometrical interpretation of the deformation process – strain energy density

function in a complex load state of polymer

Every deformation process can be illustrated by the use of a deformation path C which is a set of
points (located in the three-axial space of principal deformation state components) represented
by subsequent deformation states. The change of the deformation state is also motion along the
path C. During the motion, the principal stress components are changeable.

To introduce an analytical form of the strain energy density function based on a phenome-
nological approach, let us look at the following assumptions:

• The deformation process occurs slowly, so the kinetic effects can be neglected

• The temperature is constant and does not change

• The external forces are in range of elastic deformations

• The material is nonlinear elastic, so the longitudinal and transversal deformation coeffi-
cients are functions of the current strain.
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The deformation path can be expressed as

C =











ε1 = ϕ1(t)
ε2 = ϕ2(t)
ε3 = ϕ3(t)

for t ∈ 〈0, 1〉 (4.1)

Motion along the path C is a consequence of the influence of external loads or equivalent the
change of principal stress components from the beginning (virgin) point to the final deformation
state (Fig. 6).

Fig. 6. Deformation process in the space of principal deformation state components

In the range of elastic deformations, the relations between stress and strain take the diffe-
rential form

ε′1 =
σ′1(t)

E(ε1)
− v(ε2)

σ′2(t)

E(ε2)
− v(ε3)

σ′3(t)

E(ε3)

ε′2 =
σ′2(t)

E(ε2)
− v(ε1)

σ′1(t)

E(ε1)
− v(ε3)

σ′3(t)

E(ε3)

ε′3 =
σ′3(t)

E(ε3)
− v(ε2)

σ′2(t)

E(ε2)
− v(ε1)

σ′1(t)

E(ε1)

(4.2)

Because the range of elastics deformations is very small, so the principal stress and strain
directions can be assumed to be the same.
On the base of (4.2), we can write that

σ
′(t)
i
= E(εi)

ε′i
∏3
k=1[1 + v(εk)] + [1 + v(εi)]

∏3
k=1 v(εk)(ε

′

k
− ε′i)

∏3
k=1[1 + v(εk)]− [1 + v(εi)]

2
[

∏3
k=1 v(εk)− v(εi) + 2

∏

3

k=1
v(εk)

v(εi)

]

+ E(εi)

1+v(εi)
v(εi)

∏3
k=1 v(εk)

(

∏3
k=1 ε

′

k
− 3ε′

i

)

∏3
k=1[1 + v(εk)]− [1 + v(εi)]

2
[

∏3
k=1 v(εk)− v(εi) + 2

∏

3

k=1
v(εk)

v(εi)

]

(4.3)

hence

σi(t) =

∫

E(εi)
ε′i
∏3
k=1[1 + v(εk)] + [1 + v(εi)]

∏3
k=1 v(εk)(ε

′

k
− ε′i)

∏3
k=1[1 + v(εk)]− [1 + v(εi)]

2
[

∏3
k=1 v(εk)− v(εi) + 2

∏

3

k=1
v(εk)

v(εi)

]

dt

+

∫

E(εi)

1+v(εi)
v(εi)

∏3
k=1 v(εk)

(

∏3
k=1 ε

′

k
− 3ε′

i

)

∏3
k=1[1 + v(εk)]− [1 + v(εi)]

2
[

∏3
k=1 v(εk)− v(εi) + 2

∏

3

k=1
v(εk)

v(εi)

]

dt

(4.4)

where εi = ϕi(t) for i = 1, 2, 3.
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The density of the deformation work without loss of the generality can be written as a
function of the principal deformation state components. Each deformation state can be replaced
by an equivalent principal deformation state. Therefore, the deformation work can be written
as

W (ε1, ε2, ε3) =

∫ 3
∑

i=1

σi dεi =

1
∫

0

3
∑

i=1

σi(t)ε
′

i(t) dt (4.5)

for i = 1, 2, 3.

Assuming that the deformation process goes along a straight line, equating

ϕi(t) = ε
F
i t (4.6)

where εFi is the value of the final deformation state component for i = 1, 2, 3, we can write that

W (εF1 , ε
F
2 , ε
F
3 ) =

1
∫

0

3
∑

i=1

σi(ϕ1(t), ϕ2(t), ϕ3(t))ε
F
i dt (4.7)

To extract the volumetric part of the strain energy density function, it can be assumed that
the elementary volume piece of the material is under influence of hydrostatic pressure, and so

σi(εi) = ks (4.8)

for i = 1, 2, 3 and s ∈ 〈0, 1〉 is a non-dimensional coefficient which can be interpreted as the ratio
of the current hydrostatic pressure to its basic value k [MPa].

In such situations, the system of equations (3.2) can be simplified to the form

ε′1 =
k

E(ε1)
− v(ε2)

k

E(ε2)
− v(ε3)

k

E(ε3)

ε′2 =
k

E(ε2)
− v(ε1)

k

E(ε1)
− v(ε3)

k

E(ε3)

ε′3 =
k

E(ε3)
− v(ε2)

k

E(ε2)
− v(ε1)

k

E(ε1))

(4.9)

According to isotropy of the discussed materials, the above system of equations can be
expressed in the equivalent form

ε′ = [1− 2v(ε)]
k

E(ε)
(4.10)

where ε′1 = ε
′

2 = ε
′

3 = ε
′(s).

Consequently, the deformation path takes the form

CV : ε1 = ε2 = ε3 = ε = α(s) (4.11)

Using relationship (3.2), it is possible to determine the shape of deformation path C according
to the principal stress coefficients

C =











ε1 = β1(t)
ε2 = β2(t)
ε3 = β3(t)

(4.12)
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The volume change in terms of (4.11) and (4.12) can be written, respectively, as

∆V

V
= [1 + α(s)]3 − 1 (4.13)

and

∆V

V
=
3
∏

i=1

[1 + βi(t)]− 1 (4.14)

Comparing the right-hand sides of the above equations, we have

[1 + α(s)]3 − 1 =
3
∏

i=1

[1 + βi(t)]− 1 (4.15)

and after transformations

s = α−1
(

3

√

√

√

√

3
∏

i=1

[1 + βi(t)]− 1

)

= γ(t) (4.16)

Finally, the equation of the deformation path takes the form

CV : ε1 = ε2 = ε3 = ε = α(γ(t)) =
3

√

√

√

√

3
∏

i=1

[1 + βi(t)]− 1 (4.17)

The volumetric part of energy

W V (εF1 , ε
F
2 , ε
F
3 ) =

1
∫

0

3
∑

i=1

σi(t)α
′(γ(t))γ′(t) dt (4.18)

Fig. 7. The relation between the deformation path C and its volumetric part CV

5. Example

To illustrate the theoretical investigations, let us consider the experimental characteristics of
PVC and PA6 polymers, which take the analytical form (2.2)1, (2.3)2 and (2.2)2, (2.4)2, respec-
tively.
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Then, differential equation (4.10) takes the form

dε

ds
= [1− 2(a2ε+ b2)]

k

a1 + b1ε2n−2
(5.1)

where for PVC

a1 = 3.06 · 10
3 b1 = −29.1 · 10

9 a2 = 10.2 b2 = 0.116 n = 3

and for PA6

a1 = 1.45 · 10
3 b1 = −14.9 · 10

5 a2 = 0 b2 = 0.49 n = 2

After a series of transformations, the solution can be written as:
— for PVC

−
b1

8a2
ε4 −
b1(1− 2b2)

12a22
ε3 −
b1(1− 2b2)

2

16a32
ε2 −
b1(1− 2b2)

3

16a42
ε

−
1

2a2

[

a1 +
b1(1− 2b2)

2

16a42

]

ln
(

1−
2a2
1− 2b2

ε
)

= ks

(5.2)

— for PA6

−
b1

4a2
ε2 −
b1(1− 2b2)

4a22
ε−

1

2a2

[

a1 +
b1(1− 2b2)

2

4a22

]

ln
(

1−
2a2
1− 2b2

ε
)

= ks (5.3)

Taking into consideration the axial tension in direction 1, we can write

C :











ε1 = ε
F
1 t

ε2 = v(t)ε
F
1 t

ε3 = v(t)ε
F
1 t

(5.4)

and after using relations (4.17) and (4.18)

W V (εF1 ) =

1
∫

0

σ1(t)α
′(γ(t))γ′(t) dt (5.5)

where

σ1(t) =















a1ε
F
1 t+

1

5
b1(ε

F
1 t)
5 for PVC

a1ε
F
1 t+

1

3
b1(ε

F
1 t)
3 for PA-6

(5.6)

and

α(γ(t)) = 3

√

√

√

√

3
∏

i=1

[1 + βi(t)]− 1 (5.7)

both for PVC and PA6.
After using the theoretical method and numerical calculations, we can indicate the results

below (Fig. 8).
The plastic flow occurs, when the pure volumetric part of energy is decreasing and the value

of volumetric energy is strictly connected with the transversal deformation coefficient.
The approximation in the range of initial (small) deformation can be expressed in the follo-

wing form

W V (εF1 ) =







661(εF1 )
2 + 0.80εF1 for PVC

9.67(εF1 )
2 + 0.004εF1 for PA-6

(5.8)
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Fig. 8. Plots of pure volumetric parts of energy density (blue line) and its approximation (red line) for
(a) PVC and (b) PA-6

6. Conclusions

Based on stress-strain relations and commonly carried out tensile tests completed by the unlo-
ading process and transverse deformation, the paper describes the strain energy density function
whose elastic part of strain energy is assigned. The strain energy density and the appropriate ela-
stic part of strain energy have been used as a phenomenological approach to describe the strain
energy based deformation paths for PVC and PA6 polymers. Presented experimental results and
analytical solutions allow us to conclude that the general meaning during deformation processes
of the investigated polymers has the shear strain energy. The volumetric energy is a very small
part of the strain energy, which means that the material deformation process is strictly connec-
ted with the change of the material shape. The results obtained show that the use of the strain
energy density is a good tool in the description of material mechanical properties of polymers.
On the grounds of procuring the experimental stress-strain relation and the transversal defor-
mation, one can estimate and determine volumetric deformation. An important conclusion of
the presented work is the fact that the initiation of plastic flow occurs when the pure volumetric
part of energy begins to decrease (Fig. 8). Presented results prepared for a one-axis deformation
state are interesting and valuable, but the multiaxial deformation state is more important in the
engineering practice. In the future, the authors need to plan and perform more investigations
focused on multiaxial deformation states for non-classic materials such as various polymers in
different loading conditions. As it has been demonstrated, by using particular parts of the strain
energy density function it is possible to solve many strength problems of non-classical materials.
Presented in the paper the concept of the strain energy density based on investigation of the
mechanical material state can be a promising idea for theoretical descriptions of properties of
modern non-classic materials.
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